50 research outputs found

    The JPL telerobot operator control station. Part 2: Software

    Get PDF
    The Operator Control Station of the Jet Propulsion Laboratory (JPL)/NASA Telerobot Demonstrator System provides the man-machine interface between the operator and the system. It provides all the hardware and software for accepting human input for the direct and indirect (supervised) manipulation of the robot arms and tools for task execution. Hardware and software are also provided for the display and feedback of information and control data for the operator's consumption and interaction with the task being executed. The software design of the operator control system is discussed

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Interlaboratory Comparison of δ13C and δD Measurements of Atmospheric CH4 for Combined Use of Data Sets from Different Laboratories

    Get PDF
    We report results from a worldwide interlaboratory comparison of samples among laboratories that measure (or measured) stable carbon and hydrogen isotope ratios of atmospheric CH4 (δ13C-CH4 and δD-CH4). The offsets among the laboratories are larger than the measurement reproducibility of individual laboratories. To disentangle plausible measurement offsets, we evaluated and critically assessed a large number of intercomparison results, some of which have been documented previously in the literature. The results indicate significant offsets of δ13C-CH4 and δD- CH4 measurements among data sets reported from different laboratories; the differences among laboratories at modern atmospheric CH4 level spread over ranges of 0.5 ‰ for δ13C-CH4 and 13 ‰ for δD-CH4. The intercomparison results summarized in this study may be of help in future at tempts to harmonize δ13C-CH4 and δD-CH4 data sets from different laboratories in order to jointly incorporate them into modelling studies. However, establishing a merged data set, which includes δ13C-CH4 and δD-CH4 data from multiple laboratories with desirable compatibility, is still challenging due to differences among laboratories in instrument settings, correction methods, traceability to reference materials and long-term data management. Further efforts are needed to identify causes of the interlaboratory measurement offsets and to decrease those to move towards the best use of available δ13C-CH4 and δD-CH4 data sets

    Evaluation of Versant Hepatitis C Virus Genotype Assay (LiPA) 2.0â–¿

    No full text
    Hepatitis C virus (HCV) genotyping is a tool used to optimize antiviral treatment regimens. The newly developed Versant HCV genotype assay (LiPA) 2.0 uses sequence information from both the 5′ untranslated region and the core region, allowing distinction between HCV genotype 1 and subtypes c to l of genotype 6 and between subtypes a and b of genotype 1. HCV-positive samples were genotyped manually using the Versant HCV genotype assay (LiPA) 2.0 system according to the manufacturer's instructions. For the comparison study, Versant HCV genotype assay (LiPA) 1.0 was used. In this study, 99.7% of the samples could be amplified, the genotype of 96.0% of samples could be determined, and the agreement with the reference method was 99.4% when a genotype was determined. The reproducibility study showed no significant differences in performance across sites (P = 0.43) or across lots (P = 0.88). In the comparison study, 13 samples that were uninterpretable or incorrectly genotyped with Versant HCV genotype assay (LiPA) 1.0 were correctly genotyped by Versant HCV genotype assay (LiPA) 2.0. Versant HCV genotype assay (LiPA) 2.0 is a sensitive, accurate, and reliable assay for HCV genotyping. The inclusion of the core region probes in Versant HCV genotype assay (LiPA) 2.0 results in a genotyping success rate higher than that of the current Versant HCV genotype assay (LiPA) 1.0
    corecore